

TOWARD A NEW ERA OF RADIO ACCESS TECHNOLOGIES FOR BEYOND 5G AND 6G

Soo Young Shin

Dept. of IT Convergence Engineering

Kumoh National Institute of Technology, Republic of Korea

11th Oct, 2023

Contents

- Short Introduction of WENS lab.
- Overview of Beyond 5G/6G
- Potential RATs for B5G/6G
 - Breaking Orthogonality
 - Novel Domain based RATs
- Towards New RATs for B5G/6G in WENS
 - □ Massive MIMO

 - Index Modulation
- ► Conclusion

WENS lab.

Short Intro. On Speaker

- ▶ Name : Soo Young Shin
- Contact
 - □ E-mail : wdragon@kumoh.ac.kr
- Career
 - **1999/2001/2006 Seoul National University(SNU) Electrical Engineering (bachelor/MS/PhD)**
 - **2006.07 2007.06 University of Washington Electrical Engineering (Post Doc. Researcher)**
 - 2007.09 2010.08 Samsung Electronics Telecommunication Division System Design Lab. (senior researcher)
 - 2010.09 present Kumoh National Institute of Technology, School of Electronic Engineering (Professor)
 - **2017.02 2018.01** University of British Columbia, Vancouver, Canada (Visiting Scholar)

Wireless & Emerging Network System (WENS) Lab.

- http://wens.re.kr
- Members (Sep. 2023)
 - Professor Soo Young Shin
 - **4** Post Doc Researchers
 - B PhD candidates
 - □ 4 MS leading to PhD
 - □ 14 MS students

Feb 2023 Graduation Ceremony

Research Area and Major Achievements

- **Research Area**
 - Next generation wireless communications
 - > 5G & Beyond, 6G
 - **Unmanned Mobility with ROS**
 - AI & deep learning based signal processing (video, audio)
 - **Internet of Things**
 - Communications and network-based embedded systems
 - Augmented/Mixed Reality

Major Achievements

SCI(E) publications

Alumni (Since 2010)

PhD: 17

Overview of Beyond 5G/6G

5G Evolution

3GPP Timeline & Research Activities

Rel-18 : 5G Advanced Rel-19~20 : 5G Advanced cont'd & 6G studies Rel-21 : 6G standard (expected '27 or '28)

10

https://www.3gpp.org/specifications-technologies/releases

Emerging Applications by 6G

NTN : Non-Terrestrial Network

https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol 23_2/vol23_2_004en.pdf

Key Enablers of 5G

3GPP Rel-15 establishes a solid foundation for 5GNR

For enhanced mobile broadband and beyond

Higher Frequency

[Spectrum vs. Bandwidth]

https://www.sktelecom.com/img/eng/press/2023/230220_SKT-DCM_6G_Common_Requirements_vF.pdf

♠ HOME > INDUSTRIES > ICT

3 Mobile Carriers Give Up 5G 28 GHz Frequency Band after Record Fines

A Yoon Young-sil | ② 2023.06.02 16:27

f y

 \geq

Higher Frequency

		주파수 특성 비교				
	구분	5G 3.5GHz	5G 28GHz			
	총 대역폭 (국내 사업자)	SKT·KT 100MHz LG유플러스 80MHz	(3사 공통) 800MHz			
	직진성	중	강			
	투과율	중	약			
	도달거리 (반경)	약 1km	약 100~150m			
	치고소드 (이르사)	1.5Gbps	4.2Gbps			
	최고극도 (이근경)	(100MHz 기준)	(800MHz 기준)			
	주요 서비스	초고화질 영상, 메타버스, 자율주행, 재난로봇 등				
	리베리지		전파 특성상 한계 극복 못해			
	기미디지		3.5GHz/LTE 대비 열위			

https://v.daum.net/v/20220610171707993

Higher Frequency for 6G

Sub-THz (92~300GHz)

Advantages:

- Greater bandwidth -> Increasing capacity
- ✤ Smaller antenna size
- Minimum effects on human body

Disadvantages:

- Short range due to scattering and absorption by cloud, dust, rain etc.
- Less penetration
 - Still very earlier stage : not cost

LG Electronics Succeeds in 6G Wireless Transmission * Jung Min-hee | 0 2022.09.15 12:10 (155~175GHz)

Center in Berlin, Germany,

Massive MIMO

► 3D beamforming

► Typical # of antennas

- □ Base station : 128 or 192
 - Mobile station : up to 8

at 3.5 GHz

Wireless Emerging Network System Lab

3GPP Evolution for MIMO

https://www.5gworldpro.com/blog/2022/04/17/evolutionfrom-mimo-to-massive-mimo/

Massive MIMO

Main Radio Access Technology for 5G !!!

Advantages:

- Improved spectrum efficiency
- Improved energy efficiency

Disadvantages:

- Pilot contamination
 - limited orthogonal pilot subcarriers
- High signal processing complexity
 - large number of antennas and multiplexing of UEs
- Power Consumption
- Spectral Efficiency Saturation
- Interference
- Channel Estimation Challenges

https://wirelesspi.com/what-is-pilot-contamination-in-massive-mimo/

Massive MIMO in 6G

eXtreme MIMO (X-MIMO) / giga MIMO

- □ X-MIMO : Up to 4 times antenna than 5G
- □ Giga-MIMO : order of magnitude more antennas than 5G massive MIMO

4G	5G	5G Advanced	6G	
Spatial Multiplexing	Beamforming	improve performance for UEs with medium or high mobility by enhancing CSI reporting.	AI / ML, i.e Deep learning based algorithm	
Spatial Diversity	Beam management; Multiple Transmission and Reception Point (mTRP)	Full duplex operation	Cell Free mMIMO, mmMIMO/ Extreme mMIMO, Sub TeraHz frequency	
DL-4T4R , UL- 2T2R LTE Adv. DL 8T8R UL 4T4R	DL 64T64R 16 layer DL + 8 Layer UL Mu-MIMO	256 Antenna elements	Extreme mMIMO = 1024 antenna elements + 512 TRXs + 64 layer MU-MIMO	
3GPP Rel 8, 10,13	3GPP Rel 15, 16, 17	3GPP Rel. 18 +	Scope to be defined	

Radio Access Technology (RAT)

- In other word, wireless access technology
- Definition
 - Underlying physical connection method for a radio communication network (wiki)
 - □ Includes frequency, bandwidth, antenna (tx, rx), time, etc. → radio resources
 - Related to physical layer (PHY), Medium access control layer (MAC), radio resource control layer (RRC)

Key for B5G/6G, Higher Frequency, More Antennas !!

Via RATs, Spectral Efficiency Enhancement in Lower-Band !!!

Potential RATs for B5G/6G

Breaking Orthogonality

Breaking the Orthogonality

Orthogonality

- "In telecommunications, multiple access schemes are orthogonal when an ideal receiver can completely reject arbitrarily strong unwanted signals from the desired signal using different basis functions" (from wikipedia)
- Breaking orthogonality
 - Non-Orthogonal Multiple Access (NOMA)
 - Serve multiple users in the same resource → improving spectral efficiency and achieving massive connectivity
 - Spectral efficient frequency division multiplexing (SEFDM)
 - Achieves higher spectral efficiency compared to OFDM by violating the orthogonality of its sub-carriers

Downlink Power Domain-NOMA

How it works?

Successive interference cancellation

- No clear gain over release 15
- Implementation complexity
- B5G for new use case (Expected)

- <u>3GPP List of Work Items</u>
- 5G-Advanced: The Next Step of 5G Evolution (zte.com.cr
- <u>3GPP_Poster v2</u>
- Al-Dulaimi, O. M. K., Al-Dulaimi, A. M. K., Alexandra, M. O., & Al-Dulaimi, M. K. H. (2023). Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors (Basel, Switzerland), 23(3), 1705. <u>https://doi.org/10.3390/s23031705</u>
- B. Makki, K. Chitti, A. Behravan and M. -S. Alouini, "A Survey of NOMA: Current Status and Open Research Challenges," in IEEE Open Journal of the Communications Society, vol. 1 pp. 179-189, 2020, doi: 10.1109/OJCOMS.2020.2969899.

on NOMA

Downlink NOMA

Advantages:

- ✓ High System Capacity
- ✓ Mass Connectivity
- ✓ Fairness (Quality of Service)

Disadvantages:

- Breaking orthogonality
- SIC complexity at the receiver
- ✓ Drawback of implementing SIC is the inter-user error propagation issue resulting in residual interference.

Pack more subcarriers, relative to OFDM, in a given bandwidth to improve capacity

Transmitter receiver diagram

- *N*-point IFFT \rightarrow OFDM
- $\frac{N}{\alpha}$ -point IFFT \rightarrow SEFDM
- $\alpha = 1 \rightarrow \text{OFDM}$
- $0 < \alpha < 1 \rightarrow \text{SEFDM}$

Salnikov, Valentin, et al. "Ber performance of sefdm signals in Ite fading channels with imperfect channel knowledge." ess Internet of Things, Smart Spaces, and Next Generation erging Networks and Systems: 20th International Conference, letwork System NEW2AN 2020, and 13th Conference, ruSMART 2020, St. ÎS 1º Petersburg, Russia, August 26–28, 2020, Proceedings, Part 20. Springer International Publishing, 2020.

SEFDM

Advantages:

- Improved spectral efficiency compared to OFDM.
- ✓ Lower peak to average power ratio (PAPR) compared to OFDM
- Efficiently implemented using inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT)
- Low sensitivity to frequency offset.

Disadvantages:

- Breaking orthogonality
- High inter-carrier interference
- ✓ More complex signal detection
- ✓ More complex time-domain equalization has to be used.

Novel Domain based RATs

Novel Domain based RAT

Novel Domain based RAT

- □ Introduce new domain for new radio resources
- \Box MIMO : spatial multiplexing \rightarrow spatial domain

Index Modulation

Transmit additional data bits via the indices of the available transmit entities compared with classical communication schemes such as antenna indices, subcarriers, radio frequency (RF) mirrors, time slots, codes, etc.

OAM (Orbital Angular Momentum)

Vortex domain

Index Modulation

34

S. Doğan Tusha, A. Tusha, E. Basar and H. Arslan, "Multidimensional Index Modulation for 5G and Beyond Wireless Networks," in Proceedings of the IEEE, vol. 109, no. 2, pp. 170-199, Feb. 2021, doi: 10.1109/JPROC.2020.3040589.

Index Modulation

Wireless Emerging Network System

Index Modulation

Higher bpcu (bit per channel use)

Low complexity

RECEIVER COMPLEXITY COMPARISON FOR A 6-b/s/Hz TRANSMISSION

	V-BI	AST	S	Alamouti		
MM	ISE	Q	\mathbf{R}	MR	ML	
2x4	3x4	2x4	3x4	4x4	2x4	2x4
8QAM	8QAM 4QAM		4QAM	16QAM	32QAM	64QAM
110	560	85	140	28	14	15

Receiver Complexity Comparison

Mesleh, Raed Y., et al. "Spatial modulation." IEEE Transactions on vehicular technology 57.4 (2008): 2228-2241.

Index Moduation

Advantages:

- Enhanced System Capacity
- ✓ Reduce BER

Disadvantages:

- Limited Resources (Index)
- ✓ All the indexes not available at the same time
- ✓ Not fully researched (How to integrate with massive MIMO)

OAM (Orbital Angular Momentum)

Spatial Multiplexing order

Three directions in increasing wireless transmission capacity

OAM-MIMO multiplexing technology

Modulation order

Courtesy from NTT (https://www.youtube.com/watch?v=5P6Igla2krg)

- Multiple Orthogonal channel by different OAM modes
- High SE.

Interference free transmission (No ICI or IMI).

Wang, L., Jiang, F., Yuan, Z., Yang, J., Gui, G. and Sari, H. (2018), Mode division multiple access: a new scheme based on orbital angular momentum in millimetre wave communications for fifth generation. IET Communications, 12: 1416-1421.

OAM

• Overlapping multiple modes \rightarrow SE enhancement

Received SNR (dB)

18

Wireless

Emerging

20

Cheng, Wenchi, et al. "Orbital angular momentum for wireless communications." *IEEE Wireless Communications* 26.1 (2016)

OAM

Advantages:

- ✓ High System Capacity : orthogonality
- ✓ Higher degree of freedom

Disadvantages:

- ✓ Special type of antenna required : SPP or circular array antenna
- ✓ Beam Divergence
- ✓ Misalignment

Towards New RATs for B5G/6G in WENS

Further Spectrum Efficiency Enhancement

Our Radio Access Technology Direction

Massive MIMO-NOMA simulator

NOMA along with MIMO delivers enhanced performance

RUN

MIMO NOMA

NOMA

Wireless	Instructio	ons					
Parameters	b - Please - To simu - It takes	 Please read the user manual before the execution. To simulate, please select the parameters below and click the RUN button. It takes longer to simulate large values of antennas (M) and users (K). 					
Antenna (M)	32 🔻	Bandwidth 20 Mhz Tx Power NUE 0.2					
Licor (K)	256 ▼	Ty Dawer 100 mW Ty Dawer FLIE 0.8					

http://wens.re.kr/news/noma-simulator-v2

WENS Lab.

No. of Cell (L)	Single Cell				
No. of Users (K)	2 ^k users (k=2,3,4,,10)				
No. of Tx Antennas (M)	2 ^m Antennas (m=2,3,4,,10)				
No. of Rx Antennas	Single Antenna				
User Deployment	Random User				
Network Setup	Downlink with Perfect CSI				
Beamforming Technique	Zero Forcing (ZF)				
Bandwidth (B)	20 MHz-100 MHz				
Power Allocation	Fixed Power				
Channel Model	NLOS				
Interference Cancellation	Perfect SIC				
Performance Parameter	Spectral Efficiency				
Performance Comparison	mMIMO-OMA vs mMIMO-NOMA				

Parameters

44

mMIMO-OMA & mMIMO-NOMA

Combination With GSSK," IEEE Wireless Communications Letters, Oct. 2018.

NOMA - IM

NOMA with Generalized Space Shift Keying (NOMA-GSSK)

(b) Spectral Efficiency

(d) BER of cell-edge user

Information transmitted by both M-ary signal constellations as in classical OFDM and activating some subcarriers only accordingly

Fig. 1. Block diagram of the OFDM-IM transmitter.

E. Basar et al, "Orthogonal frequency division multiplexing with index modulation," IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5536–5549, 2013.

TABLE I A LOOK-UP TABLE EXAMPLE FOR n = 4, k = 2 and $p_1 = 2$

M. S. Sarwar, M. Ahmad and S. Y. Shin, "Subcarrier Index Modulation for Spectral Efficient Frequency Division Multiplexing in Multi-Input Multi-Output Channels," in IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2678-2683, Feb. 2023, doi: 10.1109/TVT.2022.3213011.

Fig. 1. Block diagram of the OAM-IM transceiver.

N	N_A	M	n_c	n_d	n_s	$d_{\min}^{\mathcal{S}}$	d_{\min}^{OAM}	d_{\min}	η	$\{ heta_i\}_{i=2}^{n_s}$	Active Mode Combinations $\{\mathcal{L}_k\}_{k=1}^{n_c}$	
4	1	2	4	4	1	16	8	8	3	-	$\{(0), (1), (2), (3)\}$	
4	2	2	4	2	2	8	8	8	4	$\{\pi/2\}$		
4	2	4	4	2	2	4	5.172	4	6	$\{\pi/4\}$	$\{(0, 1), (2, 3), (0, 2), (1, 3)\}$	
4	2	16	4	2	2	0.8	0.878	0.8	10	$\{0.445\}$	$\{(0, 1), (2, 3), (0, 2), (1, 3)\}$	
4	2	64	4	2	2	0.190	0.196	0.190	14	$\{0.236\}$		
4	3	2	4	1	4	5.333	4.229	4.229	5	$\{\pi/4, \pi/2, 3\pi/4\}$		
4	3	4	4	1	4	2.667	3.073	2.667	8	$\{\pi/8, \pi/4, 3\pi/8\}$	$\{(0,1,2),(0,1,3),(0,2,3),(1,2,3)\}$	
4	3	8	4	1	4	0.889	0.978	0.889	11	$\{\pi/8, \pi/4, 3\pi/8\}$		
	1 Ee										Network	

Basar, Ertugrul. "Orbital angular momentum with index modulation." *IEEE Transactions on Wireless Communications* 17.3 (2018): 2029-2037.

Fig. 7. OAM-IM and OAM-MDM comparison for Rician fading channels.

Fig. 6. OAM-IM and OAM-MDM comparison for imperfect alignment.

MIMO-NOMA with OAM-IM

A. A. Amin and S. Y. Shin, "Channel Capacity Analysis of Non-Orthogonal Multiple Access With OAM-MIMO System," in *IEEE Wireless Communications Letters*, vol. 9, no. 9, pp. 1481-1485, Sept. 2020, doi: 10.1109/LWC.2020.2994355.

MIMO-NOMA with OAM-IM

Impedance Matching : Novel IM

Impedance Matching

Impedance matching : designing source and load impedances to minimize signal reflection or maximize power transfer

Impedance Index De-mapper Z_1 Impedance Detector Z_k Impedance Detector Detector

Figure 2. System model

RAT Resource Optimization with Quantum Computing

B. Narottama and S. Y. Shin, "Quantum Neural Networks for Resource Allocation in Wireless Communications," in IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 1103-1116, Feb. 2022, doi: 10.1109/TWC.2021.3102139.

RAT Resource Optimization with Quantum Computing

COMPLEXITY COMPARISON

Method	Time Complexity
QNN	$U_{\text{QNN}} \in O(N_{\text{layer}}N_{\text{neuron}})$
RL-QNN	$U_{\text{RL-QNN}} \in O(N_{\text{layer}}N_{\text{neuron}})$
CNN	$U_{\text{CNN}} \in O\Big(N_{\text{layer}}(N_{\text{neuron}})^2\Big)$

Conclusion and Future Works

Conclusion:

Addressed RAT research challenges for B5G/6G

Integration of diverse RATs for B5G/6G

Future Works :

Develop novel RAT for 6G

Optimize the system using deep learning (AI) and other optimization tools (quantum neutral network)

wdragon@kumoh.ac.kr

